Barretenberg
The ZK-SNARK library at the core of Aztec
Loading...
Searching...
No Matches
polynomial_arithmetic.test.cpp
Go to the documentation of this file.
6#include "polynomial.hpp"
7#include <algorithm>
8#include <cstddef>
9#include <gtest/gtest.h>
10#include <utility>
11
12using namespace bb;
13
17TEST(polynomials, evaluate)
18{
19 auto poly1 = Polynomial<fr>(15); // non power of 2
20 auto poly2 = Polynomial<fr>(64);
21 for (size_t i = 0; i < poly1.size(); ++i) {
22 poly1.at(i) = fr::random_element();
23 poly2.at(i) = poly1[i];
24 }
25
26 auto challenge = fr::random_element();
27 auto eval1 = poly1.evaluate(challenge);
28 auto eval2 = poly2.evaluate(challenge);
29
30 EXPECT_EQ(eval1, eval2);
31}
32
33TEST(polynomials, fft_with_small_degree)
34{
35 constexpr size_t n = 16;
36 fr fft_transform[n];
37 fr poly[n];
38
39 for (size_t i = 0; i < n; ++i) {
40 poly[i] = fr::random_element();
41 fr::__copy(poly[i], fft_transform[i]);
42 }
43
44 auto domain = evaluation_domain(n);
45 domain.compute_lookup_table();
46 polynomial_arithmetic::fft(fft_transform, domain);
47
48 fr work_root;
49 work_root = fr::one();
50 fr expected;
51 for (size_t i = 0; i < n; ++i) {
52 expected = polynomial_arithmetic::evaluate(poly, work_root, n);
53 EXPECT_EQ((fft_transform[i] == expected), true);
54 work_root *= domain.root;
55 }
56}
57
58TEST(polynomials, split_polynomial_fft)
59{
60 constexpr size_t n = 256;
61 fr fft_transform[n];
62 fr poly[n];
63
64 for (size_t i = 0; i < n; ++i) {
65 poly[i] = fr::random_element();
66 fr::__copy(poly[i], fft_transform[i]);
67 }
68
69 constexpr size_t num_poly = 4;
70 constexpr size_t n_poly = n / num_poly;
71 fr fft_transform_[num_poly][n_poly];
72 for (size_t i = 0; i < n; ++i) {
73 fft_transform_[i / n_poly][i % n_poly] = poly[i];
74 }
75
76 auto domain = evaluation_domain(n);
77 domain.compute_lookup_table();
78 polynomial_arithmetic::fft(fft_transform, domain);
79 polynomial_arithmetic::fft({ fft_transform_[0], fft_transform_[1], fft_transform_[2], fft_transform_[3] }, domain);
80
81 fr work_root;
82 work_root = fr::one();
83 fr expected;
84
85 for (size_t i = 0; i < n; ++i) {
86 expected = polynomial_arithmetic::evaluate(poly, work_root, n);
87 EXPECT_EQ((fft_transform[i] == expected), true);
88 EXPECT_EQ(fft_transform_[i / n_poly][i % n_poly], fft_transform[i]);
89 work_root *= domain.root;
90 }
91}
92
93TEST(polynomials, split_polynomial_evaluate)
94{
95 constexpr size_t n = 256;
96 fr fft_transform[n];
97 fr poly[n];
98
99 for (size_t i = 0; i < n; ++i) {
100 poly[i] = fr::random_element();
101 fr::__copy(poly[i], fft_transform[i]);
102 }
103
104 constexpr size_t num_poly = 4;
105 constexpr size_t n_poly = n / num_poly;
106 fr fft_transform_[num_poly][n_poly];
107 for (size_t i = 0; i < n; ++i) {
108 fft_transform_[i / n_poly][i % n_poly] = poly[i];
109 }
110
113 { fft_transform_[0], fft_transform_[1], fft_transform_[2], fft_transform_[3] }, z, n),
115}
116
117TEST(polynomials, basic_fft)
118{
119 constexpr size_t n = 1 << 14;
120 fr* data = (fr*)aligned_alloc(32, sizeof(fr) * n * 2);
121 fr* result = &data[0];
122 fr* expected = &data[n];
123 for (size_t i = 0; i < n; ++i) {
124 result[i] = fr::random_element();
125 fr::__copy(result[i], expected[i]);
126 }
127
128 auto domain = evaluation_domain(n);
129 domain.compute_lookup_table();
130 polynomial_arithmetic::fft(result, domain);
131 polynomial_arithmetic::ifft(result, domain);
132
133 for (size_t i = 0; i < n; ++i) {
134 EXPECT_EQ((result[i] == expected[i]), true);
135 }
136 aligned_free(data);
137}
138
139TEST(polynomials, fft_ifft_consistency)
140{
141 constexpr size_t n = 256;
142 fr result[n];
143 fr expected[n];
144 for (size_t i = 0; i < n; ++i) {
145 result[i] = fr::random_element();
146 fr::__copy(result[i], expected[i]);
147 }
148
149 auto domain = evaluation_domain(n);
150 domain.compute_lookup_table();
151 polynomial_arithmetic::fft(result, domain);
152 polynomial_arithmetic::ifft(result, domain);
153
154 for (size_t i = 0; i < n; ++i) {
155 EXPECT_EQ((result[i] == expected[i]), true);
156 }
157}
158
159TEST(polynomials, split_polynomial_fft_ifft_consistency)
160{
161 constexpr size_t n = 256;
162 constexpr size_t num_poly = 4;
163 fr result[num_poly][n];
164 fr expected[num_poly][n];
165 for (size_t j = 0; j < num_poly; j++) {
166 for (size_t i = 0; i < n; ++i) {
167 result[j][i] = fr::random_element();
168 fr::__copy(result[j][i], expected[j][i]);
169 }
170 }
171
172 auto domain = evaluation_domain(num_poly * n);
173 domain.compute_lookup_table();
174
175 std::vector<fr*> coeffs_vec;
176 for (size_t j = 0; j < num_poly; j++) {
177 coeffs_vec.push_back(result[j]);
178 }
179 polynomial_arithmetic::fft(coeffs_vec, domain);
180 polynomial_arithmetic::ifft(coeffs_vec, domain);
181
182 for (size_t j = 0; j < num_poly; j++) {
183 for (size_t i = 0; i < n; ++i) {
184 EXPECT_EQ((result[j][i] == expected[j][i]), true);
185 }
186 }
187}
188
189TEST(polynomials, fft_coset_ifft_consistency)
190{
191 constexpr size_t n = 256;
192 fr result[n];
193 fr expected[n];
194 for (size_t i = 0; i < n; ++i) {
195 result[i] = fr::random_element();
196 fr::__copy(result[i], expected[i]);
197 }
198
199 auto domain = evaluation_domain(n);
200 domain.compute_lookup_table();
201 fr T0;
202 T0 = domain.generator * domain.generator_inverse;
203 EXPECT_EQ((T0 == fr::one()), true);
204
205 polynomial_arithmetic::coset_fft(result, domain);
206 polynomial_arithmetic::coset_ifft(result, domain);
207
208 for (size_t i = 0; i < n; ++i) {
209 EXPECT_EQ((result[i] == expected[i]), true);
210 }
211}
212
213TEST(polynomials, split_polynomial_fft_coset_ifft_consistency)
214{
215 constexpr size_t n = 256;
216 constexpr size_t num_poly = 4;
217 fr result[num_poly][n];
218 fr expected[num_poly][n];
219 for (size_t j = 0; j < num_poly; j++) {
220 for (size_t i = 0; i < n; ++i) {
221 result[j][i] = fr::random_element();
222 fr::__copy(result[j][i], expected[j][i]);
223 }
224 }
225
226 auto domain = evaluation_domain(num_poly * n);
227 domain.compute_lookup_table();
228
229 std::vector<fr*> coeffs_vec;
230 for (size_t j = 0; j < num_poly; j++) {
231 coeffs_vec.push_back(result[j]);
232 }
233 polynomial_arithmetic::coset_fft(coeffs_vec, domain);
234 polynomial_arithmetic::coset_ifft(coeffs_vec, domain);
235
236 for (size_t j = 0; j < num_poly; j++) {
237 for (size_t i = 0; i < n; ++i) {
238 EXPECT_EQ((result[j][i] == expected[j][i]), true);
239 }
240 }
241}
242
243TEST(polynomials, fft_coset_ifft_cross_consistency)
244{
245 constexpr size_t n = 2;
246 fr expected[n];
247 fr poly_a[4 * n];
248 fr poly_b[4 * n];
249 fr poly_c[4 * n];
250
251 for (size_t i = 0; i < n; ++i) {
252 poly_a[i] = fr::random_element();
253 fr::__copy(poly_a[i], poly_b[i]);
254 fr::__copy(poly_a[i], poly_c[i]);
255 expected[i] = poly_a[i] + poly_c[i];
256 expected[i] += poly_b[i];
257 }
258
259 for (size_t i = n; i < 4 * n; ++i) {
260 poly_a[i] = fr::zero();
261 poly_b[i] = fr::zero();
262 poly_c[i] = fr::zero();
263 }
264 auto small_domain = evaluation_domain(n);
265 auto mid_domain = evaluation_domain(2 * n);
266 auto large_domain = evaluation_domain(4 * n);
267 small_domain.compute_lookup_table();
268 mid_domain.compute_lookup_table();
269 large_domain.compute_lookup_table();
270 polynomial_arithmetic::coset_fft(poly_a, small_domain);
271 polynomial_arithmetic::coset_fft(poly_b, mid_domain);
272 polynomial_arithmetic::coset_fft(poly_c, large_domain);
273
274 for (size_t i = 0; i < n; ++i) {
275 poly_a[i] = poly_a[i] + poly_c[4 * i];
276 poly_a[i] = poly_a[i] + poly_b[2 * i];
277 }
278
279 polynomial_arithmetic::coset_ifft(poly_a, small_domain);
280
281 for (size_t i = 0; i < n; ++i) {
282 EXPECT_EQ((poly_a[i] == expected[i]), true);
283 }
284}
285
286TEST(polynomials, barycentric_weight_evaluations)
287{
288 constexpr size_t n = 16;
289
290 evaluation_domain domain(n);
291
292 std::vector<fr> poly(n);
293 std::vector<fr> barycentric_poly(n);
294
295 for (size_t i = 0; i < n / 2; ++i) {
296 poly[i] = fr::random_element();
297 barycentric_poly[i] = poly[i];
298 }
299 for (size_t i = n / 2; i < n; ++i) {
300 poly[i] = fr::zero();
301 barycentric_poly[i] = poly[i];
302 }
303 fr evaluation_point = fr{ 2, 0, 0, 0 }.to_montgomery_form();
304
305 fr result =
306 polynomial_arithmetic::compute_barycentric_evaluation(&barycentric_poly[0], n / 2, evaluation_point, domain);
307
308 domain.compute_lookup_table();
309
310 polynomial_arithmetic::ifft(&poly[0], domain);
311
312 fr expected = polynomial_arithmetic::evaluate(&poly[0], evaluation_point, n);
313
314 EXPECT_EQ((result == expected), true);
315}
316
317TEST(polynomials, linear_poly_product)
318{
319 constexpr size_t n = 64;
320 fr roots[n];
321
323 fr expected = 1;
324 for (size_t i = 0; i < n; ++i) {
325 roots[i] = fr::random_element();
326 expected *= (z - roots[i]);
327 }
328
329 fr dest[n + 1];
331 fr result = polynomial_arithmetic::evaluate(dest, z, n + 1);
332
333 EXPECT_EQ(result, expected);
334}
335
336template <typename FF> class PolynomialTests : public ::testing::Test {};
337
338using FieldTypes = ::testing::Types<bb::fr, grumpkin::fr>;
339
341
343{
344 using FF = TypeParam;
345 constexpr size_t n = 256;
346 auto domain = EvaluationDomain<FF>(n);
347
348 EXPECT_EQ(domain.size, 256UL);
349 EXPECT_EQ(domain.log2_size, 8UL);
350}
351
353{
354 using FF = TypeParam;
355 constexpr size_t n = 256;
356 auto domain = EvaluationDomain<FF>(n);
357
358 FF result;
359 FF expected;
360 expected = FF::one();
361 result = domain.root.pow(static_cast<uint64_t>(n));
362
363 EXPECT_EQ((result == expected), true);
364}
365
366TYPED_TEST(PolynomialTests, evaluation_domain_roots)
367{
368 using FF = TypeParam;
369 constexpr size_t n = 16;
370 EvaluationDomain<FF> domain(n);
371 domain.compute_lookup_table();
372 std::vector<FF*> root_table = domain.get_round_roots();
373 std::vector<FF*> inverse_root_table = domain.get_inverse_round_roots();
374 FF* roots = root_table[root_table.size() - 1];
375 FF* inverse_roots = inverse_root_table[inverse_root_table.size() - 1];
376 for (size_t i = 0; i < (n - 1) / 2; ++i) {
377 EXPECT_EQ(roots[i] * domain.root, roots[i + 1]);
378 EXPECT_EQ(inverse_roots[i] * domain.root_inverse, inverse_roots[i + 1]);
379 EXPECT_EQ(roots[i] * inverse_roots[i], FF::one());
380 }
381}
382
383TYPED_TEST(PolynomialTests, compute_efficient_interpolation)
384{
385 using FF = TypeParam;
386 constexpr size_t n = 250;
387 std::array<FF, n> src, poly, x;
388
389 for (size_t i = 0; i < n; ++i) {
390 poly[i] = FF::random_element();
391 }
392
393 for (size_t i = 0; i < n; ++i) {
394 x[i] = FF::random_element();
395 src[i] = polynomial_arithmetic::evaluate(poly.data(), x[i], n);
396 }
397 polynomial_arithmetic::compute_efficient_interpolation(src.data(), src.data(), x.data(), n);
398
399 for (size_t i = 0; i < n; ++i) {
400 EXPECT_EQ(src[i], poly[i]);
401 }
402}
403// Test efficient Lagrange interpolation when interpolation points contain 0
404TYPED_TEST(PolynomialTests, compute_efficient_interpolation_domain_with_zero)
405{
406 using FF = TypeParam;
407 constexpr size_t n = 15;
408 std::array<FF, n> src, poly, x;
409
410 for (size_t i = 0; i < n; ++i) {
411 poly[i] = FF(i + 1);
412 }
413
414 for (size_t i = 0; i < n; ++i) {
415 x[i] = FF(i);
416 src[i] = polynomial_arithmetic::evaluate(poly.data(), x[i], n);
417 }
418 polynomial_arithmetic::compute_efficient_interpolation(src.data(), src.data(), x.data(), n);
419
420 for (size_t i = 0; i < n; ++i) {
421 EXPECT_EQ(src[i], poly[i]);
422 }
423 // Test for the domain (-n/2, ..., 0, ... , n/2)
424
425 for (size_t i = 0; i < n; ++i) {
426 poly[i] = FF(i + 54);
427 }
428
429 for (size_t i = 0; i < n; ++i) {
430 x[i] = FF(i - n / 2);
431 src[i] = polynomial_arithmetic::evaluate(poly.data(), x[i], n);
432 }
433 polynomial_arithmetic::compute_efficient_interpolation(src.data(), src.data(), x.data(), n);
434
435 for (size_t i = 0; i < n; ++i) {
436 EXPECT_EQ(src[i], poly[i]);
437 }
438
439 // Test for the domain (-n+1, ..., 0)
440
441 for (size_t i = 0; i < n; ++i) {
442 poly[i] = FF(i * i + 57);
443 }
444
445 for (size_t i = 0; i < n; ++i) {
446 x[i] = FF(i - (n - 1));
447 src[i] = polynomial_arithmetic::evaluate(poly.data(), x[i], n);
448 }
449 polynomial_arithmetic::compute_efficient_interpolation(src.data(), src.data(), x.data(), n);
450
451 for (size_t i = 0; i < n; ++i) {
452 EXPECT_EQ(src[i], poly[i]);
453 }
454}
455
456TYPED_TEST(PolynomialTests, interpolation_constructor_single)
457{
458 using FF = TypeParam;
459
460 auto root = std::array{ FF(3) };
461 auto eval = std::array{ FF(4) };
462 Polynomial<FF> t(root, eval, 1);
463 ASSERT_EQ(t.size(), 1);
464 ASSERT_EQ(t[0], eval[0]);
465}
466
467TYPED_TEST(PolynomialTests, interpolation_constructor)
468{
469 using FF = TypeParam;
470
471 constexpr size_t N = 32;
472 std::array<FF, N> roots;
473 std::array<FF, N> evaluations;
474 for (size_t i = 0; i < N; ++i) {
475 roots[i] = FF::random_element();
476 evaluations[i] = FF::random_element();
477 }
478
479 auto roots_copy(roots);
480 auto evaluations_copy(evaluations);
481
482 Polynomial<FF> interpolated(roots, evaluations, N);
483
484 ASSERT_EQ(interpolated.size(), N);
485 ASSERT_EQ(roots, roots_copy);
486 ASSERT_EQ(evaluations, evaluations_copy);
487
488 for (size_t i = 0; i < N; ++i) {
489 FF eval = interpolated.evaluate(roots[i]);
490 ASSERT_EQ(eval, evaluations[i]);
491 }
492}
493
494TYPED_TEST(PolynomialTests, evaluate_mle_legacy)
495{
496 using FF = TypeParam;
497
498 auto test_case = [](size_t N) {
500 const size_t m = numeric::get_msb(N);
501 EXPECT_EQ(N, 1 << m);
502 Polynomial<FF> poly(N);
503 for (size_t i = 1; i < N - 1; ++i) {
504 poly.at(i) = FF::random_element(&engine);
505 }
506 poly.at(N - 1) = FF::zero();
507
508 EXPECT_TRUE(poly[0].is_zero());
509
510 // sample u = (u₀,…,uₘ₋₁)
511 std::vector<FF> u(m);
512 for (size_t l = 0; l < m; ++l) {
513 u[l] = FF::random_element(&engine);
514 }
515
516 std::vector<FF> lagrange_evals(N, FF(1));
517 for (size_t i = 0; i < N; ++i) {
518 auto& coef = lagrange_evals[i];
519 for (size_t l = 0; l < m; ++l) {
520 size_t mask = (1 << l);
521 if ((i & mask) == 0) {
522 coef *= (FF(1) - u[l]);
523 } else {
524 coef *= u[l];
525 }
526 }
527 }
528
529 // check eval by computing scalar product between
530 // lagrange evaluations and coefficients
531 FF real_eval(0);
532 for (size_t i = 0; i < N; ++i) {
533 real_eval += poly[i] * lagrange_evals[i];
534 }
535 FF computed_eval = poly.evaluate_mle(u);
536 EXPECT_EQ(real_eval, computed_eval);
537
538 // also check shifted eval
539 FF real_eval_shift(0);
540 for (size_t i = 1; i < N; ++i) {
541 real_eval_shift += poly[i] * lagrange_evals[i - 1];
542 }
543 FF computed_eval_shift = poly.evaluate_mle(u, true);
544 EXPECT_EQ(real_eval_shift, computed_eval_shift);
545 };
546 test_case(32);
547 test_case(4);
548 test_case(2);
549}
550
555TYPED_TEST(PolynomialTests, move_construct_and_assign)
556{
557 using FF = TypeParam;
558
559 // construct a poly with some arbitrary data
560 size_t num_coeffs = 64;
561 Polynomial<FF> polynomial_a(num_coeffs);
562 for (size_t i = 0; i < num_coeffs; i++) {
563 polynomial_a.at(i) = FF::random_element();
564 }
565
566 // construct a new poly from the original via the move constructor
567 Polynomial<FF> polynomial_b(std::move(polynomial_a));
568
569 // verifiy that source poly is appropriately destroyed
570 EXPECT_EQ(polynomial_a.data(), nullptr);
571
572 // construct another poly; this will also use the move constructor!
573 auto polynomial_c = std::move(polynomial_b);
574
575 // verifiy that source poly is appropriately destroyed
576 EXPECT_EQ(polynomial_b.data(), nullptr);
577
578 // define a poly with some arbitrary coefficients
579 Polynomial<FF> polynomial_d(num_coeffs);
580 for (size_t i = 0; i < num_coeffs; i++) {
581 polynomial_d.at(i) = FF::random_element();
582 }
583
584 // reset its data using move assignment
585 polynomial_d = std::move(polynomial_c);
586
587 // verifiy that source poly is appropriately destroyed
588 EXPECT_EQ(polynomial_c.data(), nullptr);
589}
590
591TYPED_TEST(PolynomialTests, default_construct_then_assign)
592{
593 using FF = TypeParam;
594
595 // construct an arbitrary but non-empty polynomial
596 size_t num_coeffs = 64;
597 Polynomial<FF> interesting_poly(num_coeffs);
598 for (size_t i = 0; i < num_coeffs; i++) {
599 interesting_poly.at(i) = FF::random_element();
600 }
601
602 // construct an empty poly via the default constructor
603 Polynomial<FF> poly;
604
605 EXPECT_EQ(poly.is_empty(), true);
606
607 // fill the empty poly using the assignment operator
608 poly = interesting_poly;
609
610 // coefficients and size should be equal in value
611 for (size_t i = 0; i < num_coeffs; ++i) {
612 EXPECT_EQ(poly[i], interesting_poly[i]);
613 }
614 EXPECT_EQ(poly.size(), interesting_poly.size());
615}
const std::vector< FF * > & get_round_roots() const
const std::vector< FF * > & get_inverse_round_roots() const
Structured polynomial class that represents the coefficients 'a' of a_0 + a_1 x .....
bool is_empty() const
Fr evaluate(const Fr &z, size_t target_size) const
Fr evaluate_mle(std::span< const Fr > evaluation_points, bool shift=false) const
evaluate multi-linear extension p(X_0,…,X_{n-1}) = \sum_i a_i*L_i(X_0,…,X_{n-1}) at u = (u_0,...
Fr & at(size_t index)
Our mutable accessor, unlike operator[]. We abuse precedent a bit to differentiate at() and operator[...
std::size_t size() const
const std::vector< MemoryValue > data
numeric::RNG & engine
testing::Types< bb::fr > FieldTypes
constexpr T get_msb(const T in)
Definition get_msb.hpp:47
RNG & get_debug_randomness(bool reset, std::uint_fast64_t seed)
Definition engine.cpp:190
void ifft(Fr *coeffs, const EvaluationDomain< Fr > &domain)
void coset_fft(Fr *coeffs, const EvaluationDomain< Fr > &domain)
void compute_linear_polynomial_product(const Fr *roots, Fr *dest, const size_t n)
Fr evaluate(const Fr *coeffs, const Fr &z, const size_t n)
void fft(Fr *coeffs, const EvaluationDomain< Fr > &domain)
fr compute_barycentric_evaluation(const fr *coeffs, const size_t num_coeffs, const fr &z, const EvaluationDomain< fr > &domain)
void coset_ifft(Fr *coeffs, const EvaluationDomain< Fr > &domain)
void compute_efficient_interpolation(const Fr *src, Fr *dest, const Fr *evaluation_points, const size_t n)
Entry point for Barretenberg command-line interface.
Definition api.hpp:5
EvaluationDomain< bb::fr > evaluation_domain
TYPED_TEST_SUITE(ShpleminiTest, TestSettings)
TYPED_TEST(ShpleminiTest, CorrectnessOfMultivariateClaimBatching)
TEST(BoomerangMegaCircuitBuilder, BasicCircuit)
constexpr decltype(auto) get(::tuplet::tuple< T... > &&t) noexcept
Definition tuple.hpp:13
static constexpr field one()
BB_INLINE constexpr field to_montgomery_form() const noexcept
BB_INLINE constexpr field pow(const uint256_t &exponent) const noexcept
static field random_element(numeric::RNG *engine=nullptr) noexcept
static BB_INLINE void __copy(const field &a, field &r) noexcept
static constexpr field zero()