77template <
class Fr>
inline std::vector<Fr>
powers_of_rho(
const Fr rho,
const size_t num_powers)
79 std::vector<Fr> rhos = {
Fr(1), rho };
80 rhos.reserve(num_powers);
81 for (
size_t j = 2; j < num_powers; j++) {
82 rhos.emplace_back(rhos[j - 1] * rho);
96 std::vector<Fr> squares = { r };
97 squares.reserve(num_squares);
98 for (
size_t j = 1; j < num_squares; j++) {
99 squares.emplace_back(squares[j - 1].sqr());
160 if (groups[0].size() % 2 != 0) {
175 Fr running_scalar(1);
179 for (
auto& poly : polynomials_to_batch) {
181 running_scalar *= challenge;
214 running_scalar *= challenge;
241 Fr r_inv = r_challenge.invert();
248 return { A_0_pos, A_0_neg };
266 Fr current_r_shift_pos = r_challenge;
267 Fr current_r_shift_neg = -r_challenge;
271 current_r_shift_pos *= r_challenge;
272 current_r_shift_neg *= -r_challenge;
275 return { P_pos, P_neg };
284 const bool& has_zk =
false);
289 const Fr& r_challenge,
296 const Fr& r_challenge);
298 template <
typename Transcript>
303 const std::shared_ptr<Transcript>& transcript,
304 bool has_zk =
false);
324 static std::vector<Commitment>
get_fold_commitments([[maybe_unused]]
const size_t virtual_log_n,
auto& transcript)
326 std::vector<Commitment> fold_commitments;
327 fold_commitments.reserve(virtual_log_n - 1);
328 for (
size_t i = 0; i < virtual_log_n - 1; ++i) {
330 transcript->template receive_from_prover<Commitment>(
"Gemini:FOLD_" +
std::to_string(i + 1));
331 fold_commitments.emplace_back(commitment);
333 return fold_commitments;
347 std::vector<Fr> gemini_evaluations;
348 gemini_evaluations.reserve(virtual_log_n);
350 for (
size_t i = 1; i <= virtual_log_n; ++i) {
351 const Fr evaluation = transcript->template receive_from_prover<Fr>(
"Gemini:a_" +
std::to_string(i));
352 gemini_evaluations.emplace_back(evaluation);
354 return gemini_evaluations;
391 static std::vector<Fr> compute_fold_pos_evaluations(
std::span<const Fr> padding_indicator_array,
392 const Fr& batched_evaluation,
398 const size_t virtual_log_n = evaluation_point.size();
400 std::vector<Fr> evals(fold_neg_evals.begin(), fold_neg_evals.end());
402 Fr eval_pos_prev = batched_evaluation;
406 zero.convert_constant_to_fixed_witness(fold_neg_evals[0].get_context());
409 std::vector<Fr> fold_pos_evaluations;
410 fold_pos_evaluations.reserve(virtual_log_n);
415 for (
size_t l = virtual_log_n; l != 0; --l) {
417 const Fr& challenge_power = challenge_powers[l - 1];
419 const Fr& u = evaluation_point[l - 1];
420 const Fr& eval_neg = evals[l - 1];
423 Fr eval_pos = ((challenge_power * eval_pos_prev * 2) - eval_neg * (challenge_power * (
Fr(1) - u) - u));
425 eval_pos *= (challenge_power * (
Fr(1) - u) + u).
invert();
430 padding_indicator_array[l - 1] * eval_pos + (
Fr{ 1 } - padding_indicator_array[l - 1]) * eval_pos_prev;
433 fold_pos_evaluations.emplace_back(padding_indicator_array[l - 1] * eval_pos_prev);
436 std::reverse(fold_pos_evaluations.begin(), fold_pos_evaluations.end());
438 return fold_pos_evaluations;
#define BB_BENCH_NAME(name)
CommitmentKey object over a pairing group 𝔾₁.
Class responsible for computation of the batched multilinear polynomials required by the Gemini proto...
std::pair< Polynomial, Polynomial > compute_partially_evaluated_interleaved_polynomial(const Fr &r_challenge)
Compute the partially evaluated polynomials P₊(X, r) and P₋(X, -r)
void set_to_be_shifted_by_one(RefVector< Polynomial > polynomials)
bool has_to_be_shifted_by_one() const
void set_interleaved(RefVector< Polynomial > results, std::vector< RefVector< Polynomial > > groups)
RefVector< Polynomial > interleaved
std::vector< RefVector< Polynomial > > groups_to_be_interleaved
void set_unshifted(RefVector< Polynomial > polynomials)
Polynomial batched_interleaved
std::vector< Polynomial > batched_group
Polynomial batched_unshifted
Polynomial compute_batched(const Fr &challenge)
Compute batched polynomial A₀ = F + G/X as the linear combination of all polynomials to be opened.
RefVector< Polynomial > to_be_shifted_by_one
std::pair< Polynomial, Polynomial > compute_partially_evaluated_batch_polynomials(const Fr &r_challenge)
Compute partially evaluated batched polynomials A₀(X, r) = A₀₊ = F + G/r, A₀(X, -r) = A₀₋ = F - G/r.
bool has_interleaved() const
RefVector< Polynomial > unshifted
bool has_unshifted() const
Polynomial batched_to_be_shifted_by_one
PolynomialBatcher(const size_t full_batched_size)
bb::Polynomial< Fr > Polynomial
static std::vector< Claim > construct_univariate_opening_claims(const size_t log_n, Polynomial &&A_0_pos, Polynomial &&A_0_neg, std::vector< Polynomial > &&fold_polynomials, const Fr &r_challenge)
Computes/aggragates d+1 univariate polynomial opening claims of the form {polynomial,...
typename Curve::ScalarField Fr
static std::vector< Claim > prove(const Fr circuit_size, PolynomialBatcher &polynomial_batcher, std::span< Fr > multilinear_challenge, const CommitmentKey< Curve > &commitment_key, const std::shared_ptr< Transcript > &transcript, bool has_zk=false)
static std::pair< Polynomial, Polynomial > compute_partially_evaluated_batch_polynomials(const size_t log_n, PolynomialBatcher &polynomial_batcher, const Fr &r_challenge, const std::vector< Polynomial > &batched_groups_to_be_concatenated={})
typename Curve::AffineElement Commitment
static std::vector< Polynomial > compute_fold_polynomials(const size_t log_n, std::span< const Fr > multilinear_challenge, const Polynomial &A_0, const bool &has_zk=false)
Computes d-1 fold polynomials Fold_i, i = 1, ..., d-1.
Gemini Verifier utility methods used by ShpleminiVerifier.
typename Curve::ScalarField Fr
static std::vector< Commitment > get_fold_commitments(const size_t virtual_log_n, auto &transcript)
Receive the fold commitments from the prover. This method is used by Shplemini where padding may be e...
static std::vector< Fr > get_gemini_evaluations(const size_t virtual_log_n, auto &transcript)
Receive the fold evaluations from the prover. This method is used by Shplemini where padding may be e...
typename Curve::AffineElement Commitment
Structured polynomial class that represents the coefficients 'a' of a_0 + a_1 x .....
Polynomial shifted() const
Returns a Polynomial the left-shift of self.
void add_scaled(PolynomialSpan< const Fr > other, Fr scaling_factor) &
adds the polynomial q(X) 'other', multiplied by a scaling factor.
Polynomial p and an opening pair (r,v) such that p(r) = v.
A template class for a reference vector. Behaves as if std::vector<T&> was possible.
static constexpr bool is_stdlib_type
typename Group::affine_element AffineElement
std::vector< Fr > powers_of_evaluation_challenge(const Fr r, const size_t num_squares)
Compute squares of folding challenge r.
std::vector< Fr > powers_of_rho(const Fr rho, const size_t num_powers)
Compute powers of challenge ρ
Entry point for Barretenberg command-line interface.
void parallel_for(size_t num_iterations, const std::function< void(size_t)> &func)
constexpr decltype(auto) get(::tuplet::tuple< T... > &&t) noexcept
std::string to_string(bb::avm2::ValueTag tag)
constexpr field invert() const noexcept
void throw_or_abort(std::string const &err)